逆写像定理

平成 20 年 12 月 小澤 徹

http://www.ozawa.phys.waseda.ac.jp/index2.html

"The inverse, the obverse, the converse, the reverse," The Velvet Underground

バナッハ空間に於ける逆写像の存在定理に就いて纏めて置こう。先ず完備距離空間の 開球に於ける縮小写像の不動点の存在に就いて考える。

定理 1 (X,d) を (空でない) 完備距離空間とし $x_0 \in X, \ \rho > 0$ に対し

$$B_{\rho}(x_0) = \{ x \in X; d(x, x_0) < \rho \}$$

を中心 x_0 で半径 ρ の開球とする。写像 $f:B_{\rho}(x_0)\to X$ は次の仮定を満たすものとする。

(i) 0 < k < 1 なる k が存在し任意の $x, y \in B_{\rho}(x_0)$ に対し不等式

$$d(f(x), f(y)) \le kd(x, y)$$

が成立つ。

(ii)
$$d(f(x_0), x_0) < (1 - k)\rho$$

このとき f は $B_o(x_0)$ に唯一つの不動点を持つ。

(証明) $x_0 \in X$ に対し $x_1 = f(x_0), \ x_{n+1} = f(x_n), \ n \ge 1$ と置いて点列 $\{x_n\}$ を定める。 仮定 (ii) より $d(f(x_0),x_0)<(1-k)\rho_0<(1-k)\rho$ なる $\rho_0>0$ を取る。点列 $\{x_n\}$ は閉球 $\overline{B_{\rho_0}(x_0)}=\{x\in X; d(x,x_0)\le \rho_0\}$ に於けるコーシー列を成す事を示そう。

任意のn に対し $x_n \in \overline{B_{\rho_0}(x_0)}$ なる事: $d(x_1,x_0) = d(f(x_0),x_0) < (1-k)\rho_0 < \rho_0$ より $x_1 \in \overline{B_{\rho_0}(x_0)}$ となる。 $n \geq 2$ とし、 $1 \leq j \leq n-1$ なる任意のj に対し $x_j \in \overline{B_{\rho_0}(x_0)}$ となる事を仮定し $x_n \in \overline{B_{\rho_0}(x_0)}$ を導こう。 $1 \leq j \leq n$ に対し(i) より

$$d(x_{j}, x_{j-1}) = d(f(x_{j-1}), f(x_{j-2}))$$

$$\leq kd(x_{j-1}, x_{j-2})$$

$$\cdots \leq k^{j-1}d(x_{1}, x_{0}) = k^{j-1}d(f(x_{0}), x_{0})$$

となる。従って三角不等式より

$$d(x_n, x_0) \leq \sum_{j=1}^n d(x_j, x_{j-1})$$

$$\leq \sum_{j=1}^n k^{j-1} d(f(x_0), x_0)$$

$$\leq \frac{1}{1-k} d(f(x_0), x_0) \leq \rho_0$$

となり帰納法が完結する。

 $\{x_n\}$ は $\overline{B_{
ho_0}(x_0)}$ のコーシー列である事: 上の不等式より m>n に対し

$$d(x_m, x_n) \leq \sum_{j=n+1}^m d(x_j, x_{j-1})$$

$$\leq \sum_{j=n+1}^m k^{j-1} d(x_1, x_0) = \frac{k^n - k^m}{1 - k} d(x_1, x_0)$$

となるので $\{x_n\}$ はコーシー列である。

 $\overline{B_{\rho_0}(x_0)}$ に於ける f の不動点の存在: $\{x_n\}$ は完備距離空間のコーシー列であるから収束する。その極限点を x と表す。 $\overline{B_{\rho_0}(x_0)}$ は閉集合であるから $x \in \overline{B_{\rho_0}(x_0)}$ となる。

$$d(f(x), x) \leq d(f(x), x_n) + d(x_n, x)$$

$$= d(f(x), f(x_{n-1})) + d(x_n, x)$$

$$\leq kd(x, x_{n-1}) + d(x_n, x) \to 0 \quad (n \to \infty)$$

より f(x) = x が従う。

 $B_{\rho}(x_0)$ に於ける f の不動点の一意性 : $x, y \in B_{\rho}(x_0)$ を f の不動点とすると

$$0 < d(x, y) = d(f(x), f(y)) < kd(x, y)$$

となる。これより

$$0 < (1-k)d(x,y) < 0$$

を得るのでx = yとなる。

定理 2 X をバナッハ空間とし $B_{\rho}(0)$ を X の原点を中心とする半径 $\rho > 0$ の開球とする:

$$B_{\rho}(0) = \{x \in X; ||x|| < \rho\}$$

 $g:B_{\rho}(0)\to X$ を縮小定数 $k\in(0,1)$ を持つ縮小写像で g(0)=0 なる写像とする。このとき $x\in B_{\rho}(0)$ に対し f(x)=x+g(x) と置いて定まる写像 $f:B_{\rho}(0)\to X$ は次の性質を持つ。

- (1) f(0) = 0, $B_{(1-k)\rho}(0) \subset f(B_{\rho}(0))$
- (2) $f: B_o(0) \to f(B_o(0))$ は全単射
- (3) $f^{-1}: f(B_{\rho}(0)) \to B_{\rho}(0)$ はリプシッツ定数 1/(1-k) を持つリプシッツ写像

(証明) $y \in B_{(1-k)\rho}(0)$ に対し $h_y: B_\rho(0) \to X$ を $h_y(x) = y - g(x), \ x \in B_\rho(0)$ で定める。このとき

$$||h_y(x') - h_y(x'')|| = ||g(x') - g(x'')|| \le k||x' - x''||$$

$$||h_y(0) - 0|| = ||h_y(0)|| = ||y|| < (1 - k)\rho$$

であるから h_y は $x_0=0$ として定理 1 の仮定を満たす。よって h_y は $B_{\rho}(0)$ に唯一つの不動点を持つ: $h_y(x)=x$

これはy - g(x) = x 及びy = x + g(x) = f(x) と同値である。これより(1) を得る。

次に f の単射性を示そう。 $y \in f(B_{\rho}(0))$ に対し $x', x'' \in B_{\rho}(0)$ が在って y = f(x') = f(x'') となっているとする。このとき x' + g(x') = x'' + g(x'') であるから x' - x'' = g(x'') - g(x') が従う。g は縮小写像であるから

$$||x' - x''|| = ||g(x') - g(x'')|| \le k||x' - x''||$$

となり x' = x'' が従う。これより (2) を得る。

最後に (3) を示そう。 $y',y''\in f(B_{\rho}(0))$ に対し $f(x')=y',\ f(x'')=y''$ なる $x',\ x''\in B_{\rho}(0)$ が一意性に存在する。このとき

$$||x' - x''|| = ||y' - y'' - (g(x') - g(x''))||$$

$$\leq ||y' - y''|| + ||g(x') - g(x'')||$$

$$\leq ||y' - y''|| + k||x' - x''||$$

これより

$$||x' - x''|| \le \frac{1}{1-k} ||y' - y''||$$

即ち

$$||f^{-1}(y') - f^{-1}(y'')|| \le \frac{1}{1-k}||y' - y''||$$

を得る。

定理 3 X,Y をバナッハ空間とする。 $U\subset X$ を点 x_0 を含む開集合で写像 $f:U\to Y$ は次の条件を満たすものとする。

- (i) $f: U \to Y$ は C^1 写像である。
- (ii) $f'(x_0) \in B(X;Y)$ は有界な逆を持つ: $(f'(x_0))^{-1} \in B(Y;X)$

このとき $\rho > 0$ が在って次が成立つ。

- (1) $f(B_{\rho}(x_0))$ は $f(x_0)$ を含む Y の開集合
- (2) $f: B_{\rho}(x_0) \to f(B_{\rho}(x_0))$ は全単射
- (3) $f^{-1}: f(B_{\rho}(x_0)) \to B_{\rho}(x_0)$ は連続
- (4) $f^{-1}: f(B_{\rho}(x_0)) \to X$ は C^1 写像であり任意の $x \in B(x_0; \rho)$ に対し

$$(f^{-1})'(f(x)) = (f'(x))^{-1}$$

注. 開写像定理により (ii) では「 $f'(x_0) \in B(X;Y)$ は全単射である」とすれば充分。

(証明) $\overline{B_r(x_0)} \subset U$ なる r > 0 を取る。 $x \in B_r(0)$ に対し

$$q(x) = (f'(x_0))^{-1}(f(x_0 + x) - f(x_0)) - x$$

と置いて $g: B_r(0) \to X$ を定める。定義より g(0) = 0 であり

$$g'(x) = (f'(x_0))^{-1} f'(x_0 + x) - I, \quad x \in B_r(0)$$

となる。これより $g': B_r(0) \to B(X;Y)$ の連続性が従う。g'(0) = 0 であるから 0 < k < 1 なる任意の k に対し $0 < \rho < r$ なる ρ が在って

$$\sup\{\|g'(x)\|; x \in B_{\rho}(0)\} \le k$$

とする事が出来る。このとき任意の $x,y \in B_{\rho}(0)$ に対し

$$||g(x) - g(y)|| = || \int_0^1 g'(tx + (1 - t)y)dt(x - y)||$$

$$\leq \left(\sup_{0 \le t \le 1} ||g'(tx + (1 - t)y)|| \right) ||x - y|| \le k||x - y||$$

となる。以上より $g:B_{\rho}(0)\to X$ は定理 2 の仮定を満たす。よって F(x)=x+g(x) として得られる写像

$$F: B_{\rho}(0) \ni x \mapsto (f'(x_0))^{-1}(f(x_0 + x) - f(x_0)) \in X$$

に対し次が成立つ。

- (1) F(0) = 0, $B_{(1-k)\rho}(0) \subset F(B_{\rho}(0))$
- (2) $F: B_{\rho}(0) \to F(B_{\rho}(0))$ は全単射
- (3) $F^{-1}: F(B_{\rho}(0)) \to B_{\rho}(0)$ はリプシッツ定数 1/(1-k) を持つリプシッツ写像

このとき $x \in B_{\rho}(x_0)$ に対し $x - x_0 \in B_{\rho}(0)$ であり $\xi = x - x_0$ と置くと

$$F(\xi) = (f'(x_0))^{-1} (f(x_0 + \xi) - f(x_0))$$

$$\iff \xi = F^{-1} ((f'(x_0))^{-1} (f(x_0 + \xi) - f(x_0))$$

となる。ここで

$$\xi \in B_{\rho}(0) \iff F(\xi) \in F(B_{\rho}(0))$$

 $\iff (f'(x_0))^{-1}(f(x_0 + \xi) - f(x_0)) \in F(B_{\rho}(0))$

なる関係に注意する。 さて $x = x_0 + \xi$ であるから

$$\xi = F^{-1}((f'(x_0))^{-1}(f(x_0 + \xi) - f(x_0)))$$

$$\iff x = x_0 + F^{-1}((f'(x_0))^{-1}(f(x_0 + \xi) - f(x_0)))$$

となる。よって $f: B_{\rho}(x_0) \to Y$ の逆写像は $f(x_0)$ を含む Y の開集合

$$f(B_{\rho}(x_0)) = f(x_0 + B_{\rho}(0)) = f(x_0) + f'(x_0)(F(B_{\rho}(0)))$$

の上で定義される写像

$$y \mapsto x_0 + F^{-1}((f'(x_0))^{-1}(y - f(x_0)))$$

である。この写像は連続写像の合成として連続である。

最後に(4)を示す事が残っている。先ず任意の $x \in B_{\rho}(x_0)$ に対し $f'(x) \in B(X;Y)$ は有界な逆を持つ事を示そう。 $\rho > 0$ の定め方により

$$||I - (f'(x_0))^{-1}f'(x)|| \le k$$

であるからノイマン級数 $\sum_{n=0}^{\infty}(I-(f'(x_0))^{-1}f'(x))^n$ はB(X) で収束し $I-(I-(f'(x_0))^{-1}f'(x))\in B(X)$ の有界な逆 $(I-(I-(f'(x_0))^{-1}f'(x)))^{-1}$ に等しい。即ち $((f'(x_0))^{-1}f'(x))^{-1}\in B(X)$ が定まる。このとき定義により

$$((f'(x_0))^{-1}f'(x))^{-1}(f'(x_0))^{-1}f'(x) = I_X,$$

$$(f'(x_0))^{-1}f'(x)((f'(x_0))^{-1}f'(x))^{-1} = I_Y$$

となる。最後の等式の両辺の左から $f'(x_0)$ を作用させ右から $(f'(x_0))^{-1}$ を作用させると

$$f'(x)((f'(x_0))^{-1}f'(x))^{-1}(f'(x_0))^{-1} = I_Y$$

となるので結局

$$(f'(x))^{-1} = ((f'(x_0))^{-1}f'(x))^{-1}(f'(x_0))^{-1}$$

がB(Y;X)の元として定まる。

さて $y',y''\in f(B_{\rho}(x_0))$ に対し $x'=f^{-1}(y'),\ x''=f^{-1}(y'')$ が $B_{\rho}(x_0)$ 内に存在する。このとき

$$f^{-1}(y') - f^{-1}(y'') - (f'(x''))^{-1}(y' - y'')$$

$$= (f'(x''))^{-1}((f'(x''))(x' - x'') - (y' - y''))$$

$$= -(f'(x''))^{-1}(f(x') - f(x'') - f'(x'')(x' - x''))$$

となるので

$$||f^{-1}(y') - f^{-1}(y'') - (f'(x''))^{-1}(y' - y'')$$

$$\leq ||(f'(x''))^{-1}|| ||f(x') - f(x'') - f'(x'')(x' - x'')||$$

となる。さてfの逆写像は

$$f^{-1}(y) = x_0 + F^{-1}((f'(x_0))^{-1}(y - f(x_0)))$$

で与えられ、 F^{-1} はリプシッツ定数 1/(1-k) を持つリプシッツ写像であるから

$$||x' - x''|| = ||f^{-1}(y') - f^{-1}(y'')||$$

$$= ||F^{-1}((f'(x_0))^{-1}(y' - f(x_0))) - F^{-1}((f'(x_0))^{-1}(y'' - f(x_0)))||$$

$$\leq \frac{1}{1-k} ||(f'(x_0))^{-1}(y' - f(x_0)) - (f'(x_0))^{-1}(y'' - f(x_0))||$$

$$= \frac{1}{1-k} ||(f'(x_0))^{-1}(y' - y'')||$$

$$\leq \frac{1}{1-k} ||(f'(x_0))^{-1}||||y' - y''||$$

以上より

$$\frac{\|f^{-1}(y') - f^{-1}(y'') - (f'(x''))^{-1}(y' - y'')\|}{\|y' - y''\|} \le \frac{1}{1 - k} \|(f'(x_0))^{-1}\| \|(f'(x''))^{-1}\| \frac{\|f(x') - f(x'') - f'(x'')(x' - x'')\|}{\|x' - x''\|}$$

であり右辺は f の x'' に於ける微分可能性より $||x'-x''|| \to 0$ なるとき 0 に収束する。 f と f^{-1} の連続性より $||x'-x''|| \to 0$ と $||y'-y''|| \to 0$ とは同値であり最後の不等式から f^{-1} の y'' に於ける微分可能性が従い、その微分係数 $(f^{-1})'(y'')$ は $(f'(x''))^{-1}$ であるから等式

$$(f^{-1})'(y'') = (f'(x''))^{-1}$$

が成立つ事が分かる。

参考文献: ディュドネ,現代解析の基礎,東京図書 S. Lang, *Analysis I, II*, Addison-Wesley