Last modified: February 4, 2021

OZAWA, Tohru :

Publications :

  More than 200 papers with peer review.

» Publication List
» Selected Papers with Comments
» Forthcoming Papers


  More than 3000 cites in Mathematical Reviews Database, AMS.
  Part of my publications are cited in the following books.
  • J. Bourgain, Global Solutions of Nonlinear Schrödinger Equations, AMS Colloquium Publications 46, 1999.
  • N. Boussaïd and A. Comech, Nonlinear Dirac Equation, Spectral Stability of Solitary Waves, Mathematical Surveys and Monographs 244, AMS, 2019.
  • R. Carles, Semi-classical analysis for nonlinear Schrödinger equations,World Scientific, 2008.
  • T. Cazenave, An Introduction to Nonlinear Schrödinger equations, first edition, Textos de Métodos Matemáticos 22, IM-UFRJ, Rio de Janeiro, 1989.
  • T. Cazenave, An Introduction to Nonlinear Schrödinger equations, second edition, Textos de Métodos Matemáticos 26, IM-UFRJ, Rio de Janeiro, 1993.
  • T. Cazenave, Blow up and Scattering in the Nonlinear Schrödinger Equation, Textos de Métodos Matemáticos 30, IM-UFRJ, Rio de Janeiro, 1994.
  • T. Cazenave, Semilinear Schrödinger Equations, AMS Courant Lecture Notes in Mathematics 10, 2003.
  • T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations, Oxford Science Publications, 1998.
  • J.-M. Delort, A quasi-linear Birkhoff normal form method. Application to the quasi-linear Klein-Gordon equation on S1, Astérisque 341, SMF, 2012.
  • D. B. Dix, Large - Time Behavior of Solutions of Linear Dispersive Equations, Lecture Notes in Mathematics 1668, Springer, 1997.
  • M. R. Ebert and M. Reissig, Methods for Partial Differential Equations, Birkhäuser, 2018.
  • D. Ellwood, I. Rodnianski, G. Staffilani, and J. Wunsch, Evolution Equations, AMS, Clay Mathematics Institute, 2013.
  • G. Fibich, The Nonlinear Schrödinger Equation, Singular Solutions and Optical Collapse, Applied Mathematical Sciences 192, Springer 2015.
  • M. H. Giga, Y. Giga, and J. Saal, Nonlinear Partial Differential Equations, Asymptotic Behavior of Solutions and Self-Similar Solutions, Birkhäuser, 2010.
  • Y. Giga and M. H. Giga, Nonlinear Partial Differential Equations, Kyoritsu Publ. 1999 (in Japanese).
  • J. Ginibre, Introduction aux équations de Schrödinger non linéaires, Cours de DEA 1994 - 1995, Paris Onze édition L 161, 1998.
  • B. Guo, Z. Gan, and J.-J. Zhang, Zakharov equations and solitary wave solutions, Science Publ., 2011 (in Chinese).
  • B. Guo, Z. Gan, L. Kong, and J. Zhang, The Zakharov System and its Soliton Solutions, Springer, 2016
  • N. Hayashi, Nonlinear Dispersive Wave Equations - Asymptotics of Solutions, Iwanami Studies in Advanced Mathematics, 2018 (in Japanese).
  • N. Hayashi, E. I. Kaikina, P. I. Naumkin, and I. A. Shishmarev, Asymptotics for Dissipative Nonlinear Equations, Lecture Notes in Mathematics 1884, Springer, 2006.
  • L. Hörmander, Lectures on Nonlinear Hyperbolic Differential Equations, Mathématiques & Applications 26, Springer, 1996.
  • S. Katayama, Global Solutions and the Asymptotic Behavior for Nonlinear Wave Equations with Small Initial Data, MSJ Memoirs 36, 2017.
  • R. Killip and M. Vişan, Nonlinear Schrödinger Equations at Critical Regularity, Clay Mathematics Institute, 2009.
  • H. Koch, D. Tataru, M. Visan, Dispersive Equations and Nonlinear Waves, Generalized Korteweg-de Vries, Nonlinear Schrödinger, Wave and Schrödinger Maps, Birkhäuser, 2014.
  • P.G. LeFloch and Yue Ma, The Hyperboloidal Foliation Method, World Scientific, 2015.
  • Y. Charles Li, Chaos in Partial Differential Equations, International Press, 2003.
  • Y. Charles Li and A. Yurov, Lie-Bäcklund-Darboux Transformations, International Press, 2014.
  • F. Linares and G.Ponce, Introduction to Nonlinear Dispersive Equations, Universitext, Springer, 2008.
  • F. Linares and G.Ponce, Introduction to Nonlinear Dispersive Equations, Second Edition, Universitext, Springer, 2014.
  • W.-M. Liu and E. Kengne, Schrödinger Equations in Nonlinear Systems, Springer 2019.
  • Y. Lu and B. Texier, A Stability Criterion for High-Frequency Oscillations, Mémoires de la Société Mathématique de France 142, 2015
  • A. Matsumura and K. Nishihara, Global Solutions to Nonlinear Differential Equaitons, Nippon Hyoron Publ., 2004 (in Japanese).
  • C. Miao and B. Zhang, Harmonic Analytic Method for Partial Differential Equations, Science Publ., 2008 (in Chinese).
  • H. Okamoto, Mathematical Analysis of the Navier-Stokes Equations, University of Tokyo Press, 2009 (in Japanese).
  • T. Ogawa, Real Analytical Methods of Nonlinear Evolution Equations, Maruzen Publ., 2013 (in Japanese).
  • N. Raymond, Bound States of the Magnetic Schrödinger Operator, European Mathematical Society, 2017
  • M. Ruzhansky and D. Suragan, Hardy inequalities on homogeneous groups: 100 years of Hardy inequalities, Progress in Mathematics, Vol.327, Birkhäuser, 2019
  • Y. Sawano, Theory of Besov spaces, Nippon Hyoron Publ., 2011 (in Japanese).
  • C. Sulem and P.-L. Sulem, The Nonlinear Schrödinger Equations, Self - Focusing and Wave Collapse, Applied Mathematical Sciences 139, Springer, 1999.
  • T. Tao, Nonlinear Dispersive Equations, CBMS Regional Conference Series in Math. Vol. 106, AMS, 2006.
  • H. Triebel, Tempered Homogeneous Function Spaces, European Mathematical Society, 2015.
  • B. Wang, Z. Huo, C. Hao, and Z. Guo, Harmonic Analysis Method for Nonlinear Evolution Equations, I, World Scientific, 2011.

[ Back ]